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Abstract

Synthesis of dysiherbaine model compound 2 and its diasterecomer 3 is described. The structurally simplified
model compound 2, lacking the hydroxyl and N-methyl groups on the tetrahydropyran ring, induced convulsive
behavior in mice upon intracerebral injections. © 1999 Elsevier Science Ltd. All rights reserved.
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Dysiherbaine (1) was recently isolated as a neuroexitotoxin from a Micronesian marine
sponge Dysidea herbacea [1]. Radioligand binding assay of 1 toward ionotropic glutamate
receptors and electrophysiological experiments indicated that 1 is a potent agonist of non-
NMDA (N-methyl-D-aspartate) subtype receptors in the central nervous system. On the basis
of extensive spectroscopic studies including long range carbon-proton coupling constants (**J,,)
analysis [2], the structure of 1 was determined to be an unprecedented diamino dicarboxylic acid
which is characterized by a structurally novel cis-fused hexahydrofuro[3,2-b]pyran ring system
containing a glutamate substructure [1]. Due to its unique skeletal structure and potent
neuroexitatory activity, dysiherbaine may become a useful leading compound for development
of selective and powerful agonists or antagonists of glutamate receptors; however, its supply
from natural source is limited. Therefore, total synthesis of 1 and its designed analogues is
required for further physiological studies. In this letter, we describe a synthesis of the
structurally simplified model compound 2, which lacks two functional groups on the
tetrahydropyran ring, and of its diastereomer 3 for their biological evaluations.
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Our synthetic plan for 2 was based on a coupling of a protected D-serinal 4 [3], readily
prepared from D-serine, onto cis-fused bicyclic ester § (Scheme 1). We anticipated that the
cis-fused nature of 5 would allow an addition of 4 to occur preferentially from the convex face
of the ester enolate of 5, establishing the correct configuration at quaternary C4.! In turn, the
6/5-bicyclic ether skeleton of 5 was envisioned to be constructed through 5-exo selective
cyclization of epoxy diol 6.
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Synthesis of bicyclic ester § is summarized in Scheme 2. Hydroboration of the known 7 [4]
with 9-BBN followed by oxidative workup gave a primary alcohol (88% yield), which was
protected as its p-methoxyphenyldiphenylmethyl (MMTT), then desilylated to afford secondary
alcohol 8. The hydroxyl group was then inverted by an oxidation-reduction sequence to give
9 (74% yield over the four steps), which was converted to primary alcohol 10 in 58% overall
yield. Oxidation of 10 with SO,-pyridine to an aldehyde followed by Wittig olefination gave
o,B-unsaturated ester 11 in 92% yield for the two steps. Ester 11 was reduced with
diisobutylaluminum hydride (DIBAL), the resulting allylic alcohol being subjected to Sharpless
asymmetric epoxidation using (+)-diethyl tartrate as the chiral auxiliary to give epoxy alcohol
12 in 80% yield for the two steps. The silyl group was removed with n-Bu,NF to result in
epoxy diol 6, which underwent 5-exo selective cyclization during chromatography on silica gel,
leading to cis-fused bicyclic diol 13 in 85% yield. The stereostructure of 13 was confirmed on
the basis of prominent NOEs between H-4/H-7 and H-6/H-7.  Oxidative cleavage of the vic-diol
with NalO, followed by further oxidation with NaClO, provided a carboxylic acid (75% yield
for two steps), which was then benzylated with N, N -diisopropyl-O-benzylisourea [5] to give
ester 5 in 94% yield.

Coupling of the lithium enolate generated from ester 5 (LDA, THF-HMPA, -78 °C) with
aldehyde 4 provided a mixture of diastereomeric alcohols, which were easily separated by
column chromatography on silica gel to give 14a (18%) and 14b (75%) (Scheme 3). The next
sequence of reactions were carried separately from each diastereomer without their
stereochemical assignment. Deoxygenation by the method of Barton-McCombie [6] provided
diastereomeric 15a (81%) or 15b (68%). Selective removal of the acetonide group was
accomplished with FeCl,-SiO, [7] in each case. The oxidation with Jones reagent and following
esterification with trimethylsilyldiazomethane provided methyl ester 16a (43%) or its C4

! The numbering of carbon atoms in all compounds in this letter corresponds to that of dysiherbaine (1).
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epimer 16b (61%). At this stage, their structures were unambiguously determined by X-ray
crystallographic analysis of dimethyl ester 17 corresponding to 16b. The unexpected
stereochemical outcome in this coupling of 4 to 5 is yet to be explained.
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Reagents and conditions: (a) 9-BBN, THF, then H,0,, NaHCOj3, 88%; (b) MMTrCl, EtsN, DMAP, CH,Cly; (c) n-BuyNF,
THF; (d) (COCI)2, DMSO, EtaN, CH,Clp, -78 °C to r.t.; (o) L-Selectride, THF, -78 °C, 74% (4 steps); (f) TBSCI, imidazole,
DMAP, DMF, 50 °C; (g) PPTS, MeOH, 58% (2 steps); (h) SO3-Pyr, EtsN, DMSO, CH,Cl, 0 °C; (i) PhaP=CHCO,Me,
CH,Clp, 92% (2 steps); (j) DIBAL, CHoCl,, -78 °C, quant.; (k) +-BuOOH, Ti(O#Pr),, (+)-diethyl tartrate, 4A molecular sieve,
CH,Clp, -20 °C, 80%; (I} n-BugNF, THF, then silica gel, 85%; (m) NalO;, THF-H,0; (n) NaClO,, NaHaPO,,
2-methyl-2-butene, t-BuOH, 75% (2 steps); (0) i-PrNHC(OBN)=Ni-Pr, PhCHj, 94%.

Finally, hydrolysis of the ester groups with aqueous IN NaOH followed by removal of the
Boc group with trifluoroacetic acid gave rise to the targeted model compound 2 and its C4
diastereomer 3 in 85% and 60% yield for the two steps from the respective precursors.

The toxicity of these model compounds 2 and 3 was tested on mice as a preliminary
investigation. Intracerebral injection of 2 (20 pg/mouse) in mice (n=3) induced typical
convulsive behaviors such as violent scratching and head bobbing for about 4 minutes, which
was also observed for dysiherbaine (10-40 pmol/mouse). Interestingly, however, mice
became hypoactive and rigid with occasional scratching behavior and eventually went into a
deep sleeplike state about 5 minutes after the injection. This state lasted for upto 6 h. All
mice recovered from these symptoms gradually and behaved apparently normal on the next day.
Lower dose (2 pg /mouse) of 2 induced a moderate sleeper effect with faster recovery (2 h).
The lowest dose tested (0.2 pg/mouse) only induced hypoactivity and moderate scratching
behavior. Diastereomeric compound 3 did not induce neither typical convulsive behavior nor
"sleeper" activity at 20 pg/mouse, suggesting that the stereochemistry at C4 quaternary carbon
is important for this activity. Since dysiherbaine and other excitatory amino acids, such as
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kainic acid or domoic acid, do not exhibit the "sleeper" activity, compound 2 may have some
other actions at least in part differing from glutamate receptors on the central nervous system.

Further studies directed toward a total synthesis of dysiherbaine and its other analogues are
currently under way and will be reported in due course.
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Reagents and conditions: (a) LDA, THF, -78 °C, then 4; (b) NaH, CS,, Mel, THF; (c) n-BuaSnH, AIBN, PhCH3, 110
°C; (d) FeCl,-SiOp CHClg; (e) Jones reagent, acetone; (f) TMSCHN,, PhH-MeOH; (g) 1N NaOH, MeOH; (h) TFA, CH,Cl,.
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